

Seoul National University Active Aeroelasticity and Rotorcraft Lab

Hover Test of SNU Active Trailing Edge Flap for Rotor Vibration Reduction

SangJoon Shin

Seoul National University

Seoul National University Active Aeroelasticity and Rotorcraft Lab

- **II. Hover Test Preparation**
- **III. Pre-test Prediction**
- **IV. Conclusion**

Introduction

Seoul National University Active Aeroelasticity and Rotorcraft Lab.

- Rotor blade with a trailing-edge flap
 - Rotor vibration and noise control by active flap blades
 - Active rotor numerous studies have been done*, and recently by DLR, JAXA, NUAA, SNU, ...
 - Mechanism structural design, fluid dynamics, control, and wind-tunnel test
 - Underlying structural dynamics and aerodynamic features yet to be extracted

▲ Trailing-edge flap blade concept

▲ SMART rotor whirl stand test

▲ Sikorsky wind tunnel test

*Friedmann, P. P., "On-Blade Control of Rotor Vibration, Noise, and Performance: Just Around the Corner? The 33rd Alexander Nikolsky Honorary Lecture," American Helicopter Society 69th Annual Forum, Phoenix, AZ, May 2013.

Introduction

Seoul National University Active Aeroelasticity and Rotorcraft Lab

SNUF (SNU Flap-blade) research objectives

Baseline multi-disciplinary investigation

Mid-fidelity aeromechanics analysis with full flap rotor

Closed-loop vibratory load control

Composite blade analysis correlation

Aeromechanics

35.9

35.6

 $\mu \epsilon_{12}$

Harmonic signal processing

5

1.4

 M_x

 M_u

2N/rev

Simulation data 4/rev sin

Time, s

1.2

0.8

N/rev

2.6

- **Time-periodic and multi-blade nature** w/ different collective \succ
- Hub load dynamics w/ different flap actuation mode \succ

Hover test overview

 \geq

 \succ

Active flap blade aeromechanics, composite blade integrity correlation

Low-latency harmonic signal processing for higher harmonic control

Seoul National University Active Aeroelasticity and Rotorcraft Lab

> 20 15

-310

-320

-330

-350

-360

Nm -340

δMx, N-m

Seoul National University Active Aeroelasticity and Rotorcraft Lab.

I. Introduction

II. Hover Test Preparation

III. Pre-test Prediction

IV. Conclusion

Seoul National University Active Aeroelasticity and Rotorcraft Lab.

Hover test stand fabrication

Seoul National University Rotor Test System (SNURTS)

- Siheung Campus test center: 9X12 m, 240 kW electric power capacity
- Collaboration w/ Chungnam National University: design/fabrication of the test stand
- 55kW AC motor direct drive, max. 2,000 RPM
- 6-axis balance: max. 2,000kgf thrust, 160kgf-m torque

▲ SNURTS components

▲ SNURTS control room

Seoul National University Active Aeroelasticity and Rotorcraft Lab

- Test stand fundamental mode identification
 - Impact test and correlation
 - Test stand structural analysis by ANSYS
 - Contact normal stiffness adjusted to match test results
 - Major resonant speed identified: 300, 900RPM
 - ISO-1940: satisfactory vibration level @ 1,100~1,300 RPN

▲ Test stand vibration level at 1,120 RPM

▲ Impact test result

▲ 3D FEM modal analysis correlation

Seoul National University Active Aeroelasticity and Rotorcraft Lab

- Test stand fundamental mode identification
 - Mode control by the stiffener
 - Bending and torsion modes of the stand may be adjusted
 - Bearing tower is structurally isolated with the test stand
 - k/rev : 1300, 2600, 3900, 5200 ... RPM avoided

W m m	H m m	T m m	Ν	Support pillar 1 st bending RPM (Hz)	Support pillar 2 nd bending RPM (Hz)	Bearing tower 1 st axial RPM (Hz)	Stand 1 st torsion RPM (Hz)	Bearing tower 1st bending RPM (Hz)	Stand 2 nd torsion RPM (Hz)
Baseline				295 (4.92)	924 (15.4)	1,532 (25.5)	1,320 (22)	4,022 (67.0)	5,120 (85.3)
20	60	10	3	336 (5.60)	1,059 (17.7)	-	1,448 (24.1)	-	-
20	60	10	6	362 (6.04)	1,227 (20.5)	1,538 (25.6)	1,558 (26.0)	4,084 (68.1)	5,358 (89.3)
20	120	10	6	383 (6.39)	1,474 (24.6)	1,538 (25.6)	1,714 (28.6)	4,154 (69.2)	5,580 (93.0)
20	150	10	6	388 (6.47)	1,560 (26)	1,539 (25.7)	1,776 (29.6)	4,188 (69.8)	5,706 (95.1)
20	180	10	6	392 (6.53)	1,638 (27.3)	1,540 (25.7)	1,830 (30.5)	4,218 (70.3)	5,874 (97.9)

▲ Isolated bearing tower mode

▲ Stiffener parametric examination

Seoul National University Active Aeroelasticity and Rotorcraft Lab

Rigid 4-blade SNUF rotor hub

Blade and grip structural integrity evaluation

- Hingeless hub: grip structural analysis
- Rotor load from analysis: 39kN → applied load factor 1.5: 58kN centrifugal load
- Safety margin > 2

▲ SNURTS rigid hub

▲ Grip M6-bolt reinforcement

Normalized span station

▲ Stress recovery

▲ Strain recovery

10

Seoul National University Active Aeroelasticity and Rotorcraft Lab.

SNUF blade ground-test

Ground bench test (scheduled ~March 23')

- Strain gauge calibration by the tip displacement (flap, lag, torsion)
 - Tip displacement measure sensor for the test stand
- Measurement and control program test
- Actuator inner-loop position control test

▲ SNUF blade ground test

▲ Fabricated grip and SNUF rotor hub assembly

Seoul National University Active Aeroelasticity and Rotorcraft Lab

SNURTS evaluation

Reference OLS rotor from NASA test*

- 2-m diameter, NACA0012, no twist, no taper
- To evaluate the functionality of SNURTS
- Validate against the present prediction

Present DYMORE configuration of the SNURTS-OLS rotor

▲ Rotor hub modal test

▲ Present OLS hub

▲ Fan plot from the present hub test result

*Floros, M. W., Gold, N. P., and Johnson. W., "An Exploratory Aerodynamic Limits Test with Analytical Correlation", American Helicopter Society 4th Decennial Specialists' Conference, Jan 2004.

Seoul National University Active Aeroelasticity and Rotorcraft Lab.

OLS rotor hover test

Collective pitch sweep test

- Test repeated 3 times and one open-door test
- Sufficient ground height for OLS rotor
- Functionality of SNURTS verified (run, collective, stop command)

- ▲ Ground effect wake analysis
 - \rightarrow No ground effect

Seoul National University Active Aeroelasticity and Rotorcraft Lab.

OLS rotor hover test

Collective pitch sweep test

- 98% ↑ reproducibility for the measured thrust and torque
- Measured unrealistic figure of merit: 2012 KARI test as a reference
- Present momentum theory inflow analysis gives good correlation to the reference test
- Free-wake viscous influence should be carefully correlated
- Balance designed for SNUF rotor 400 N-m rated torque
 - \rightarrow torque resolution unmatched for max torque 40 N-m OLS rotor

Seoul National University Active Aeroelasticity and Rotorcraft Lab.

II. Test Preparation

III. Pre-test Prediction

IV. Conclusion

Seoul National University Active Aeroelasticity and Rotorcraft Lab.

- Correlation against the comprehensive analysis
 - Multi-body dynamic analysis: DYMORE and CAMRAD-II
 - Incorporate SNURTS pitch link, servo actuators, shaft, trailing-edge flaps
 - Code-to-code comparison and evaluation
 - Time-marching free-wake analysis with the multiple-trailer wake
 - DYMORE-Simulink coupled simulation for the control

▲ SNUF DYMORE configuration

▲ SNUF CAMRAD-II configuration

▲ Free-wake analysis

Seoul National University Active Aeroelasticity and Rotorcraft Lab.

Additional accuracy for the lifting-line theory

> C81 table for an airfoil w/ a flap

- Improved aerodynamic load prediction at the flap station
- RANS (k-ω SST) by using FLUENT, matched y+=1 for all the cases
- Advance ratio $\mu = 0 \sim 0.16 \rightarrow \text{Mach } 0.3 \sim 0.5$

▲ CFD grid of NACA0015 15% flap

▲ Present CFD grid accuracy comparison (NACA0012, no flap)

▲ Present rotor operating condition

Seoul National University Active Aeroelasticity and Rotorcraft Lab

Hover test prediction

Flap rotor test

- Baseline rotor performance
- Far wake 5 ages, 2° azimuth, 10° spatial step
- Flap deflection (steady and harmonic)
- Nonlinear blade twist achieved by the steady flap deflection (2°, 4°, 6°, 8°, 10°)
- Positive flap deflection: thrust and torque slightly increase, no FM variation

▲ SNUF blade effective twist due to the steady flap deflection

Seoul National University Active Aeroelasticity and Rotorcraft Lab.

Wind-tunnel test prediction

> Isolated rotor in the forward flight, fixed collective

- Wind-tunnel speed 30 m/s ($\mu = 0.162$), shaft angle $\alpha_s = -6^\circ$
- Steady collective mode flap deflection sweep (2°, 4°, 6°, 8°, 10°)
- Thrust increased most when $0^{\circ} \rightarrow 2^{\circ}$
- Control authorities: rolling moment > pitching moment
- Flapped section pitching moment drives the entire blade to the opposite AOA
- A soft in-plane blade responds in a 'control reversal' mode

\rightarrow Additional control phase lead or lag will be induced

Seoul National University Active Aeroelasticity and Rotorcraft Lab.

- II. Test Preparation
- **III. Pre-test Prediction**
- **IV. Conclusion**

Conclusion

Seoul National University Active Aeroelasticity and Rotorcraft Lab.

Conclusion and test schedule

Conclusion

- SNUF blade design: blade structural design, test and analysis
- SNURTS preparation: 3m-diameter 75HP class Mach-scaled rotor test stand

Test schedule and future works

- Hover test schedule: April ~ May 2023
- SNUF baseline rotor test (passive flap)
 - RPM: 1,100 ~ 1,300 RPM
 - Collective sweep: 2°~12°
- 1- active flap actuation test
- 4- active flap actuation test
- Future work: 5-hole fast response probe for wake measurement
- Wind-tunnel tests on ROKAFA

Seoul National University Active Aeroelasticity and Rotorcraft Lab.

Thank you

Seoul National University Active Aeroelasticity and Rotorcraft Lab

Blade preliminary structural test*

Tensile test

- Root and flap component safety margin > 2
- Blade modal test
 - Blade No. 1 has 20% lower torsional frequency
 - Blade Nos. 2~5: within 10% frequency difference

▲ Tensile test

▲ Root and flap component tensile load

*Im, B. U., Lee, C. B., and Shin, S. J., "Experimental Evaluation on a Mach-scaled SNUF Blade for Active Vibration Control," 45th European Rotorcraft Forum, Poland, 2019

Seoul National University Active Aeroelasticity and Rotorcraft Lab

Flap rotor blade dynamics measurement

Bench test

- Flap deflection: measured by the potentiometer and calibrated by the digital protractor
- DAQ: $0 \sim 5 \text{ V} \rightarrow 0 \sim 100 \text{ V}$ by amplifier
- Linearization of the flap driving mechanism

Seoul National University Active Aeroelasticity and Rotorcraft Lab

Flap rotor blade dynamics measurement

Bench test

3rd order flap deflection/command voltage transfer function identified

Seoul National University Active Aeroelasticity and Rotorcraft Lab

Vibratory load

IBC control design and simulation *

- \geq **Controller** design
 - Sub-optimal LQR/LQE-observer baseline*
 - LTI system identification using the dedicated N, N \pm 1/rev input by the discrete Fourier filter**
 - Output regulation:

Simulation δy response

Identified transfer function response

1.1

Time, s ▲ Flap rotor system identification

1.2

1.3

10

5

0

-5

-10

-15

-20

-25

0.7

0.8

0.9

δMx, N-m

 $J = \frac{1}{2} \int_0^\infty y^T Q y + u^T R u \, dt = \frac{1}{2} \int_0^\infty x^T C^T Q C x + u^T R u \, dt$

2510

2500

2490

2480

2470

2460

0

Ζ

▲ Closed-loop simulation

▲ Relative stability analysis

*Im, B., Lee, C., Kee, Y., and Shin, S.J., "Investigation of Linear Higher Harmonic Control Algorithm for Rotorcraft Vibration Reduction", Journal of Dynamic Systems Measurement and Control, Vol. 143, (1), 2021, pp. 011008-1 - 011008-12.

90

**Im, B., Kang, S., Kong, G., Park, S., Cho, H., and Shin, S. J., "Improved Higher Harmonic Control Analysis for HART-II Rotor", The Vertical Flight Society's 77th Annual Forum & Technology Display, May 2021